Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Guanosine triphosphate cyclohydrolase 1 (GCH1) is the first enzyme in the tetrahydrobiopterin (BH4) biosynthesis, an important co-factor for the formation of nitric oxide, biogenic amines and serotonin. Hereditary diseases such as DOPA-responsive dystonia and atypical phenylketonuria are known to be caused by coding or splice-site mutations in the GCH1 gene, leading mostly to a dominant negative enzyme. However, recent evidence suggests a clinical genetics of GCH1 beyond these hereditary loss-of-function diseases. That is, a non-coding GCH1 haplotype has been associated with reduced pain hypersensitivity and with altered vascular endothelial function. Moreover, the presence of the non-coding c.*243C>T variant in the 3'-untranslated region (3'-UTR) of the GCH1 gene has been associated with mildly increased heart rate and blood pressure. Here, we show that carriers of the pain-protective GCH1 haplotype also carry the c.*243C>T variant and vice versa. We thus demonstrate that apart from the coding or splice-site variants causing DOPA-responsive dystonia and atypical phenylketonuria, there is a common clinically relevant GCH1 genetics that is so far known to be related to unfavorable changes of endothelial function and a reduced risk for chronic pain.

Original publication

DOI

10.1016/j.mrrev.2008.04.007

Type

Journal article

Journal

Mutat Res

Publication Date

2008

Volume

659

Pages

195 - 201

Keywords

3' Untranslated Regions, Cardiovascular Diseases, Endothelium, Vascular, GTP Cyclohydrolase, Heterozygote, Humans, Pain, Polymorphism, Single Nucleotide, Risk