Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Organs used for transplantation may experience long periods of cold ischemic preservation and consequently oxygen free radical-mediated damage following reperfusion. Lecithinized superoxide dismutase (lec-SOD) is a novel free radical scavenger that has been shown to bind with high affinity to cell membranes. The aim of this study was to determine whether lec-SOD bound to endothelial cells under organ preservation conditions to mediate direct antioxidant activity at the endothelial cell surface and thus offer protection against the harmful effects of ischemia/reperfusion injury. METHODS: An in vitro study was performed on large vessel endothelial cells (HUVEC) and a human microvascular endothelial cell line HMEC-1, to investigate the potential therapeutic benefits of incorporating lec-SOD into organ preservation solution. A cold hypoxia/reoxygenation system was developed to examine lec-SOD binding affinity to endothelial cells, protection against hypoxia/reoxygenation-induced cell death, and neutrophil adhesion. RESULTS: Lec-SOD bound to endothelial cells with higher affinity than unmodified recombinant human superoxide dismutase (rhSOD) and significantly protected both HUVEC and HMEC-1 from cell death following 27 hours of cold hypoxia (P < 0.01). Furthermore, neutrophil adhesion to the endothelium stimulated by hypoxia and reoxygenation was significantly inhibited by treatment with lec-SOD but not by lecithin or rhSOD (P < 0.01). Analysis by flow cytometry demonstrated that E-selectin and ICAM-1 were up-regulated by hypoxia/reoxygenation that was inhibited in part by lec-SOD. CONCLUSIONS: The results from this study suggest that incorporation of lec-SOD into organ preservation solutions provides effective protection to endothelial cells against cold ischemia and reperfusion injury following transplantation.

Original publication

DOI

10.1046/j.1523-1755.2001.060002786.x

Type

Journal article

Journal

Kidney Int

Publication Date

08/2001

Volume

60

Pages

786 - 796

Keywords

Antioxidants, Cell Adhesion, Cell Death, Cells, Cultured, Cryopreservation, E-Selectin, Endothelium, Vascular, Flow Cytometry, Free Radicals, Humans, Hypertonic Solutions, Intercellular Adhesion Molecule-1, Kidney Transplantation, Neutrophils, Organ Preservation Solutions, Phosphatidylcholines, Reperfusion Injury, Superoxide Dismutase, Umbilical Veins