Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To improve the labeling efficiency of pseudo-continuous arterial spin labeling (PCASL) at 7T using parallel transmission (pTx). METHODS: Five healthy subjects were scanned on an 8-channel-transmit 7T human MRI scanner. Time-of-flight (TOF) angiography was acquired to identify regions of interest (ROIs) around the 4 major feeding arteries to the brain, and B 1 + and B0 maps were acquired in the labeling plane for tagging pulse design. Complex weights of the labeling pulses for each of the 8 transmit channels were calculated to produce a homogenous radiofrequency (RF) -shimmed labeling across the ROIs. Variable-Rate Selective Excitation (VERSE) pulses were also implemented as a part of the labeling pulse train. Whole-brain perfusion-weighted images were acquired under conditions of RF shimming, VERSE with RF shimming, and standard circularly polarized (CP) mode. The same subjects were scanned on a 3T scanner for comparison. RESULTS: In simulation, VERSE with RF shimming improved the flip-angles across the ROIs in the labeling plane by 90% compared with CP mode. VERSE with RF shimming improved the temporal signal-to-noise ratio by 375% compared with CP mode, but did not outperform a matched 3T sequence with a matched flip-angle. CONCLUSION: We have demonstrated improved PCASL tagging at 7T using VERSE with RF shimming on a commercial head coil under conservative SAR limits at 7T. However, improvements of 7T over 3T may require strategies with less conservative SAR restrictions.

Original publication

DOI

10.1002/mrm.28173

Type

Journal article

Journal

Magn Reson Med

Publication Date

23/01/2020

Keywords

RF shimming, parallel transmission (pTx), perfusion, pseudo-continuous arterial spin labeling, ultra-high field