Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. METHODS: In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. RESULTS: We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1 H phantom and with hyperpolarized 13 C pyruvate in vivo. CONCLUSIONS: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.

Original publication

DOI

10.1002/mrm.28462

Type

Journal article

Journal

Magn Reson Med

Publication Date

02/2021

Volume

85

Pages

790 - 801

Keywords

DNP, hyperpolarized 13 C , metabolic imaging, pulse sequence design, spectral-spatial RF, spiral imaging, Carbon Isotopes, Echo-Planar Imaging, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Phantoms, Imaging, Pyruvic Acid, Retrospective Studies