Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2020 The Authors Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ringing and signal loss in CMR sequences, significantly hinder accuracy of anatomical and functional cardiac quantification, and recovering from those is insufficiently addressed in population imaging. In this work, we propose a new robust approach, coined Image Imputation Generative Adversarial Network (I2-GAN), to learn key features of cardiac short axis (SAX) slices near missing information, and use them as conditional variables to infer missing slices in the query volumes. In I2-GAN, the slices are first mapped to latent vectors with position features through a regression net. The latent vector corresponding to the desired position is then projected onto the slice manifold, conditioned on intensity features through a generator net. The generator comprises residual blocks with normalisation layers that are modulated with auxiliary slice information, enabling propagation of fine details through the network. In addition, a multi-scale discriminator was implemented, along with a discriminator-based feature matching loss, to further enhance performance and encourage the synthesis of visually realistic slices. Experimental results show that our method achieves significant improvements over the state-of-the-art, in missing slice imputation for CMR, with an average SSIM of 0.872. Linear regression analysis yields good agreement between reference and imputed CMR images for all cardiac measurements, with correlation coefficients of 0.991 for left ventricular volume, 0.977 for left ventricular mass and 0.961 for right ventricular volume.

Original publication

DOI

10.1016/j.media.2020.101812

Type

Journal article

Journal

Medical Image Analysis

Publication Date

01/01/2021

Volume

67