Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACTBackgroundObesity is a major global health problem, and is associated with increased cardiometabolic morbidity and mortality. Protein glycosylation is a frequent postranslational modification, highly responsive to numerous pathophysiological conditions and ageing. The prospect of biological age reduction, by reverting glycosylation changes through metabolic intervention, opens many possibilities. We have investigated whether weight loss interventions affect inflammation- and ageing-associated IgG glycosylation changes, in a longitudinal cohort of bariatric surgery patients. To support potential findings, BMI-related glycosylation changes were monitored in a longitudinal twins cohort.MethodsIgG N-glycans were chromatographically profiled in 37 obese patients, subjected to low-calorie diet, followed by bariatric surgery, across multiple timepoints. Similarly, plasma-derived IgG N-glycan traits were longitudinally monitored in 1,680 participants from the TwinsUK cohort.ResultsLow-calorie diet induced a marked decrease in the levels of IgG N-glycans with bisecting GlcNAc, whose higher levels are usually associated with ageing and inflammatory conditions. Bariatric surgery resulted in extensive alterations of the IgG glycome that accompanied progressive weight loss during one-year follow-up. We observed a significant increase in digalactosylated and sialylated glycans, and a substantial decrease in agalactosylated and core fucosylated IgG glycans. In general, this IgG glycan profile is associated with a younger biological age and reflects an enhanced anti-inflammatory IgG potential. Loss of BMI over a 20 year period in the TwinsUK cohort validated a weight loss-associated agalactosylation decrease and an increase in digalactosylation.ConclusionsAltogether, these findings highlight that weight loss substantially affects IgG N-glycosylation, resulting in reduced biological and immune age.GRAPHICAL ABSTRACTHIGHLIGHTSObesity is associated to inflammation-related agalactosylated and bisected IgG glycoformsIgG galactosylation and sialylation increase after bariatric surgery-induced weight lossProgressive decrease of BMI is associated to increased IgG galactosylation, implying a reduction of biological age

Original publication

DOI

10.1101/2020.04.24.20077867

Type

Journal article

Publisher

Cold Spring Harbor Laboratory

Publication Date

29/04/2020