Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In a variety of species, the LH-secretory response to gonadotropin-releasing hormone (GnRH) is completely suppressed by the combined actions of prolactin (PRL) and dopamine (DA). In sheep, this effect is only observed under long days (nonbreeding season [NBS]). To investigate the level at which these mechanisms operate, we assessed the effects of PRL and bromocriptine (Br), a DA agonist, on the gonadotropin-secretory and mRNA responses to GnRH in pituitary cell cultures throughout the ovine annual reproductive cycle. As expected, the LH-secretory response to GnRH was only abolished during the NBS following combined PRL and Br application. Conversely, the LHB subunit response to GnRH was reduced during both the BS and NBS by the combined treatment and Br alone. Similar results were obtained in pars distalis-only cultures, indicating that the effects are pars tuberalis (PT)- independent. Further signaling studies revealed that PRL and Br alter the LH response to GnRH via convergence at the level of PLC and PKC. Results for FSH generally reflected those for LH, except during the BS where removal of the PT allowed PRL and Br to suppress the FSH-secretory response to GnRH. These data show that suppression of the LH-secretory response to GnRH by PRL and DA is accompanied by changes in mRNA synthesis, and that the photoperiodic modulation of this inhibition operates primarily at the level of LH release through alterations in PKC and PLC. Furthermore, the suppressive effects of PRL and DA on the secretion of FSH are photoperiodically regulated in a PT-dependent manner.

Original publication

DOI

10.1095/biolreprod.111.096909

Type

Journal article

Journal

Biol Reprod

Publication Date

2012

Volume

86

Keywords

Animals Bromocriptine/pharmacology Cells, Cultured Dopamine Agonists/pharmacology Follicle Stimulating Hormone/biosynthesis/metabolism Gonadotropin-Releasing Hormone/*metabolism *Luteinizing Hormone/biosynthesis/metabolism *Photoperiod Pituitary Gland/drug effects/*metabolism Prolactin/*physiology Receptors, LHRH/drug effects/*metabolism Reproduction/physiology Seasons Sheep