Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Coronary microvascular dysfunction (CMD) has been proposed as a key driver in the etiopathogenesis of Takotsubo syndrome (TTS), likely related to an "adrenergic storm" upon a susceptible microvascular circulation. The aim of our manuscript was to assess CMD in patients with TTS through the computation of the angiography-derived index of microcirculatory resistance (IMR) and its correlation with clinical presentation. Coronary angiograms of 41 consecutive TTS patients were retrospectively analyzed to derive angiography-based indices of CMD. Three indices (NH-IMRangio, AngioIMR and A-IMR) were calculated based on quantitative flow ratio. CMD was defined as an IMRangio value ≥ 25 units. The correlation between CMD and clinical presentation was then assessed. Median age was 76 years, 85.7% were women and mean left ventricular ejection fraction (LVEF) at first echocardiogram was 41.2%. Angiography-derived IMR was higher in left anterior descending artery (LAD) than circumflex and right coronary artery with either NH-IMRangio (53.9 ± 19.8 vs 35.8 ± 15.4 vs 40.8 ± 18.5, p-value 

Original publication

DOI

10.1007/s10554-022-02698-6

Type

Journal article

Journal

Int J Cardiovasc Imaging

Publication Date

01/2023

Volume

39

Pages

233 - 244

Keywords

Coronary physiology, Index of microvascular resistance, Quantitative flow ratio, Takotsubo syndrome, Humans, Female, Aged, Male, Takotsubo Cardiomyopathy, Stroke Volume, Retrospective Studies, Microcirculation, Ventricular Function, Left, Predictive Value of Tests, Coronary Vessels, Myocardial Ischemia, Coronary Angiography, Vascular Resistance, Coronary Circulation