Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An inability of adipose tissue to expand consequent to exhausted capacity to recruit new adipocytes might underlie the association between obesity and insulin resistance. Adipocytes arise from mesenchymal precursors whose commitment and differentiation along the adipocytic lineage is tightly regulated. These regulatory factors mediate cross-talk between adipose cells, ensuring that adipocyte growth and differentiation are coupled to energy storage demands. The WNT family of autocrine and paracrine growth factors regulates adult tissue maintenance and remodelling and, consequently, is well suited to mediate adipose cell communication. Indeed, several recent reports, summarized in this review, implicate WNT signalling in regulating adipogenesis. Manipulating the WNT pathway to alter adipose cellular makeup, therefore, constitutes an attractive drug-development target to combat obesity-associated metabolic complications.

Original publication

DOI

10.1016/j.tem.2008.09.002

Type

Journal article

Journal

Trends Endocrinol Metab

Publication Date

01/2009

Volume

20

Pages

16 - 24

Keywords

Adipogenesis, Animals, Energy Metabolism, Humans, Inflammation Mediators, Mesenchymal Stem Cells, Models, Biological, Obesity, PPAR gamma, Signal Transduction, Wnt Proteins, beta Catenin