Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We previously developed, synthesized and tested light-activated sulfonylureas for optical control of KATP channels and pancreatic beta cell activity in vitro and in vivo. Such technology relies on installation of azobenzene photoswitches onto the sulfonylurea backbone, affording light-dependent isomerization, alteration in ligand affinity for SUR1 and hence KATP channel conductance. Inspired by molecular dynamics simulations and to further improve photoswitching characteristics, we set out to develop a novel push-pull closed ring azobenzene unit, before installing this on the sulfonylurea glimepiride as a small molecule recipient. Three fine-tuned, light-activated sulfonylureas were synthesized, encompassing azetidine, pyrrolidine and piperidine closed rings. Azetidine-, pyrrolidine- and piperidine-based sulfonylureas all increased beta cell Ca2+ -spiking activity upon continuous blue light illumination, similarly to first generation JB253. Notably, the pyrrolidine-based sulfonylurea showed superior switch OFF performance to JB253. As such, third generation sulfonylureas afford more precise optical control over primary pancreatic beta cells, and showcase the potential of pyrrolidine-azobenzenes as chemical photoswitches across drug classes.

Original publication

DOI

10.1111/dme.15220

Type

Journal article

Journal

Diabet Med

Publication Date

12/2023

Volume

40

Keywords

imaging, insulin, islet, photopharmacology, signal transduction, Humans, Insulin-Secreting Cells, Sulfonylurea Compounds, Adenosine Triphosphate, Azetidines, Piperidines, Pyrrolidines