Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND OBJECTIVES: Directional deep brain stimulation (DBS) electrodes are increasingly used, but conventional computed tomography (CT) is unable to directly image segmented contacts owing to physics-based resolution constraints. Postoperative electrode segment orientation assessment is necessary because of the possibility of significant deviation during or immediately after insertion. Photon-counting detector (PCD) CT is a relatively novel technology that enables high resolution imaging while addressing several limitations intrinsic to CT. We show how PCD CT can enable clear in vivo imaging of DBS electrodes, including segmented contacts and markers for all major lead manufacturers. MATERIALS AND METHODS: We describe postoperative imaging and reconstruction protocols we have developed to enable optimal lead visualization. PCD CT images were obtained of directional leads from the three major manufacturers and fused with preoperative 3T magnetic resonance imaging (MRI). Radiation dosimetry also was evaluated and compared with conventional imaging controls. Orientation estimates from directly imaged leads were compared with validated software-based reconstructions (derived from standard CT imaging artifact analysis) to quantify congruence in alignment and directional orientation. RESULTS: High-fidelity images were obtained for 15 patients, clearly indicating the segmented contacts and directional markers both on CT alone and when fused to MRI. Our routine imaging protocol is described. Ionizing radiation doses were significantly lower than with conventional CT. For most leads, the directly imaged lead orientations and depths corresponded closely to those predicted by CT artifact-based reconstructions. However, unlike direct imaging, the software reconstructions were susceptible to 180° error in orientation assessment. CONCLUSIONS: High-resolution photon-counting CT can very clearly image segmented DBS electrode contacts and directional markers and unambiguously determine lead orientation, with lower radiation than in conventional imaging. This obviates the need for further imaging and may facilitate anatomically tailored directional programming.

Original publication

DOI

10.1016/j.neurom.2023.09.003

Type

Journal article

Journal

Neuromodulation

Publication Date

02/11/2023

Keywords

Deep brain stimulation, directional electrodes, imaging, orientation, photon-counting CT