Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Patient selection for reperfusion therapies requires significant expertise in neuroimaging. Increasingly, machine learning-based analysis is used for faster and standardized patient selection. However, there is little information on how such software influences real-world patient management. AIMS: We evaluated changes in thrombolysis and thrombectomy delivery following implementation of automated analysis at a high volume primary stroke centre. METHODS: We retrospectively collected data on consecutive stroke patients admitted to a large university stroke centre from two identical 7-month periods in 2017 and 2018 between which the e-Stroke Suite (Brainomix, Oxford, UK) was implemented to analyse non-contrast CT and CT angiography results. Delivery of stroke care was otherwise unchanged. Patients were transferred to a hub for thrombectomy. We collected the number of patients receiving intravenous thrombolysis and/or thrombectomy, the time to treatment; and outcome at 90 days for thrombectomy. RESULTS: 399 patients from 2017 and 398 from 2018 were included in the study. From 2017 to 2018, thrombolysis rates increased from 11.5% to 18.1% with a similar trend for thrombectomy (2.8-4.8%). There was a trend towards shorter door-to-needle times (44-42 min) and CT-to-groin puncture times (174-145 min). There was a non-significant trend towards improved outcomes with thrombectomy. Qualitatively, physician feedback suggested that e-Stroke Suite increased decision-making confidence and improved patient flow. CONCLUSIONS: Use of artificial intelligence decision support in a hyperacute stroke pathway facilitates decision-making and can improve rate and time of reperfusion therapies in a hub-and-spoke system of care.

Original publication

DOI

10.1159/000522423

Type

Journal article

Journal

Cerebrovasc Dis Extra

Publication Date

2022

Volume

12

Pages

28 - 32

Keywords

Machine learning, Stroke, Thrombectomy, Thrombolysis, e-ASPECTS, Artificial Intelligence, Computed Tomography Angiography, Humans, Retrospective Studies, Stroke, Thrombectomy, Treatment Outcome