Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: The purpose of this work is to validate a simple and versatile integrated variable flip angle (VFA) method for mapping B1 in hyperpolarized MRI, which can be used to correct signal variations due to coil inhomogeneity. THEORY AND METHODS: Simulations were run to assess performance of the VFA B1 mapping method compared to the currently used constant flip angle (CFA) approach. Simulation results were used to inform the design of VFA sequences, validated in four volunteers for hyperpolarized xenon-129 imaging of the lungs and another four volunteers for hyperpolarized carbon-13 imaging of the human brain. B1 maps obtained were used to correct transmit and receive inhomogeneity in the images. RESULTS: Simulations showed improved performance of the VFA approach over the CFA approach with reduced sensitivity to T1. For xenon-129, the B1 maps accurately reflected the variation of signal depolarization, but in some cases could not be used to correct for coil receive inhomogeneity due to a lack of transmit-receive reciprocity resulting from suboptimal coil positioning. For carbon-13, the B1 maps showed good agreement with a separately acquired B1 map of a phantom and were effectively used to correct coil-induced signal inhomogeneity. CONCLUSION: A simple, versatile, and effective VFA B1 mapping method was implemented and evaluated. Inclusion of the B1 mapping method in hyperpolarized imaging studies can enable more robust signal quantification.

Original publication

DOI

10.1002/mrm.30378

Type

Journal article

Journal

Magn Reson Med

Publication Date

17/11/2024

Keywords

B1 correction, hyperpolarized 129Xe MRI, hyperpolarized 13C MRI