Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Pancreatic beta-cells metabolise both lipid and glucose nutrients but chronic exposure (>24 h) to elevated fatty acid (FA) concentrations results in deleterious metabolic and morphological changes. The aims of this study were to assess the adaptive morphological, metabolic and secretory responses of islet beta-cells to exposure and removal of FA. Isolated mouse islets and INS-1 beta-cells were exposed to oleate or palmitate (0.5 mM) or a 1:1 mixture of both FA for 48 h prior to a 24 h period without FA. Subsequent changes in lipid storage and composition (triglycerides, TG and phospholipids, PL), gene expression, beta-cell morphology and glucose-stimulated insulin secretion (GSIS) were determined. Intracellular TG content increased during exposure to FA and was lower in cells subsequently incubated in FA-free media (P < 0.05); TG storage was visible as oil red O positive droplets (oleate) by light microscopy or 'splits' (palmitate) by electron microscopy. Significant desaturation of beta-cell FA occurred after exposure to oleate and palmitate. After incubation in FA-free media, there was differential handling of specific FA in TG, resulting in a profile that tended to revert to that of control cells. FA treatment resulted in elevated lipolysis of intracellular TG, increased FA oxidation and reduced GSIS. After incubation in FA-free media, oxidation remained elevated but inhibition of FA oxidation with etomoxir (10 microM) had no effect on the improvement in GSIS. The beta-cell demonstrates metabolic flexibility as an adaptive response to ambient concentrations of FA.

Original publication

DOI

10.1002/jcb.22445

Type

Journal article

Journal

J Cell Biochem

Publication Date

01/03/2010

Volume

109

Pages

683 - 692

Keywords

Adaptation, Physiological, Animals, Cell Shape, Cells, Cultured, Fatty Acids, Insulin, Insulin Secretion, Insulin-Secreting Cells, Islets of Langerhans, Lipids, Mice, Oleic Acid, Palmitates