Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Intraspecies antigenic diversity in the blood stages of the human malaria parasite Plasmodium falciparum was investigated using a collection of murine monoclonal antibodies and clones of the parasite. The results were as follows: (a) The schizont and merozoite stages of the parasite express on their surface clonally restricted antigens detectable by strain-specific antibodies in indirect immunofluorescence tests. (b) These restricted antigens are phenotypically stable characteristics of clones grown in vitro. (c) The molecules carrying the specific antigens were isolated by immunoprecipitation and were found to be parasite proteins ranging in size from Mr 190,000 to 200,000 between clones. (d) Comparative immunoprecipitation and peptide mapping of these molecules showed that each parasite clone expresses a protein that is antigenically and structurally distinct from the equivalent products of several other clones. (e) The different clonal products are, however, immunologically interrelated, since they possess determinants in common with all tested isolates of the parasite. (f) These polymorphic molecules are closely related to a previously described schizont protein of P. falciparum that is posttranslationally cleaved into fragments located on the merozoite surface. These findings show the existence of a family of related polymorphic schizont antigens (PSA) of P. falciparum, whose expression is clonally restricted, and indicate that these proteins have regions of constant and variable antigenicity. We propose that a system of immunological classification of the parasite can be developed based on the polymorphism of these proteins.

Original publication

DOI

10.1084/jem.161.1.160

Type

Journal

J Exp Med

Publication Date

01/01/1985

Volume

161

Pages

160 - 180

Keywords

Animals, Antibodies, Monoclonal, Antigen-Antibody Reactions, Antigens, Protozoan, Chemical Precipitation, Epitopes, Female, Fluorescent Antibody Technique, Humans, Hybridomas, Malaria, Mice, Mice, Inbred BALB C, Molecular Weight, Peptides, Phenotype, Plasmodium falciparum, Polymorphism, Genetic