Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background Familial hypercholesterolaemia is a common autosomal-dominant disorder caused by mutations in three known genes. DNA-based cascade testing is recommended by UK guidelines to identify affected relatives; however, about 60% of patients are mutation-negative. We assessed the hypothesis that familial hypercholesterolaemia can also be caused by an accumulation of common small-effect LDL-C-raising alleles. Methods In November, 2011, we assembled a sample of patients with familial hypercholesterolaemia from three UKbased sources and compared them with a healthy control sample from the UK Whitehall II (WHII) study. We also studied patients from a Belgian lipid clinic (Hopital de Jolimont, Haine St-Paul, Belgium) for validation analyses. We genotyped participants for 12 common LDL-C-raising alleles identified by the Global Lipid Genetics Consortium and constructed a weighted LDL-C-raising gene score. We compared the gene score distribution among patients with familial hypercholesterolaemia with no confirmed mutation, those with an identified mutation, and controls from WHII. Findings We recruited 321 mutation-negative UK patients (451 Belgian), 319 mutation-positive UK patients (273 Belgian), and 3020 controls from WHII. The mean weighted LDL-C gene score of the WHII participants (0.90 [SD 0.23]) was strongly associated with LDL-C concentration (p=1.4 × 10-77; R2=0.11). Mutation-negative UK patients had a significantly higher mean weighted LDL-C score (1.0 [SD 0.21]) than did WHII controls (p=4.5 × 10-16), as did the mutation-negative Belgian patients (0.99 [0.19]; p=5.2 × 10 -20). The score was also higher in UK (0.95 [0.20]; p=1.6 × 10-5) and Belgian (0.92 [0.20]; p=0.04) mutation-positive patients than in WHII controls. 167 (52%) of 321 mutation-negative UK patients had a score within the top three deciles of the WHII weighted LDL-C gene score distribution, and only 35 (11%) fell within the lowest three deciles. Interpretation In a substantial proportion of patients with familial hypercholesterolaemia without a known mutation, their raised LDL-C concentrations might have a polygenic cause, which could compromise the efficiency of cascade testing. In patients with a detected mutation, a substantial polygenic contribution might add to the variable penetrance of the disease.

Original publication

DOI

10.1016/S0140-6736(12)62127-8

Type

Journal article

Journal

The Lancet

Publication Date

01/01/2013

Volume

381

Pages

1293 - 1301