Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Endothelial cell (EC) survival and regeneration are important determinants of the response to vascular injury that leads to neointimal hyperplasia and accelerated atherosclerosis. Nitric oxide (NO) is a key regulator of EC and endothelial progenitor cell function, but the pathophysiological mechanisms that regulate endothelial NO synthase in endothelial regeneration remain unclear. METHODS AND RESULTS: Endothelium-targeted overexpression of GTP cyclohydrolase (GCH) I increased levels of the endothelial NO synthase cofactor, tetrahydrobiopterin, in an EC-specific manner and reduced neointimal hyperplasia in experimental vein grafts in GCH/apolipoprotein E-knockout mice. These effects were mediated through enhanced donor-derived survival and recipient-derived repopulation of GCH transgenic ECs, revealed by tracking studies in Tie2-LacZ/GCH-Tg/apolipoprotein E-knockout recipient mice or donor grafts, respectively. Endothelial GCH overexpression increased endothelial NO synthase coupling and enhanced the proliferative capacity of ECs and circulating endothelial progenitor cell numbers after vascular injury. CONCLUSIONS: These observations indicate that endothelial tetrahydrobiopterin availability modulates neointimal hyperplasia after vascular injury via accelerated EC repopulation and growth. Targeting tetrahydrobiopterin-dependent endothelial NO synthase regulation in the endothelium is a rational therapeutic target to enhance endothelial regeneration and reduce neointimal hyperplasia in vascular injury states.

Original publication

DOI

10.1161/CIRCULATIONAHA.112.000249

Type

Journal article

Journal

Circulation

Publication Date

10/09/2013

Volume

128

Pages

S50 - S58

Keywords

endothelial cells, endothelial progenitor cells, free radicals, nitric oxide synthase, remodeling, Animals, Biopterin, Cell Survival, Endothelial Cells, Humans, Hyperplasia, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Neointima, Regeneration, Transplants, Up-Regulation, Vena Cava, Inferior