Stable isotope imaging of biological samples with high resolution secondary ion mass spectrometry and complementary techniques
Jiang H., Favaro E., Goulbourne CN., Rakowska PD., Hughes GM., Ryadnov MG., Fong LG., Young SG., Ferguson DJP., Harris AL., Grovenor CRM.
Stable isotopes are ideal labels for studying biological processes because they have little or no effect on the biochemical properties of target molecules. The NanoSIMS is a tool that can image the distribution of stable isotope labels with up to 50. nm spatial resolution and with good quantitation. This combination of features has enabled several groups to undertake significant experiments on biological problems in the last decade. Combining the NanoSIMS with other imaging techniques also enables us to obtain not only chemical information but also the structural information needed to understand biological processes. This article describes the methodologies that we have developed to correlate atomic force microscopy and backscattered electron imaging with NanoSIMS experiments to illustrate the imaging of stable isotopes at molecular, cellular, and tissue scales. Our studies make it possible to address 3 biological problems: (1) the interaction of antimicrobial peptides with membranes; (2) glutamine metabolism in cancer cells; and (3) lipoprotein interactions in different tissues. © 2014 Elsevier Inc.