Measurement and imaging of planar electromagnetic phantoms based on NMR imaging methods
Frollo I., Andris P., Přibil J., Vojtíšek L., Dermek T., Valkovič L.
Planar electromagnetic phantom design for measurement and imaging using NMR has been performed. Electromagnetic phantom computation and testing on a NMR 0.178 Tesla Esaote Opera imager were accomplished. The classical geometrical and chemical phantoms are generally used for testing of NMR imaging systems. They are simple cylindrical or rectangular objects with different dimensions and shapes with holes filled with specially prepared water solutions. In our experiments a homogeneous phantom (reference medium) - a container filled with water - was used. The resultant image represents the magnetic field distribution in the homogeneous phantom. An image acquired by this method is actually a projection of the sample properties onto the homogeneous phantom. The goal of the paper is to map and image the magnetic field deformation using NMR imaging methods. We are using a double slender rectangular vessel with constant thickness filled with specially prepared water solution in our experiments. For detection a carefully tailored gradient-echo imaging method, susceptible to magnetic field homogeneity, was used.