Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MUFAs are unsaturated FAs with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels are associated with cardiometabolic disorders, including CVD, T2D, and metabolic syndrome (MS). Previous genome-wide association studies (GWASs) have identified seven loci for plasma and erythrocyte palmitoleic and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential functional variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in more than 15,000 participants of Chinese and European ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor) ≥ 8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor) ≥ 6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99% credible set was reduced from 16 (covering 94.8 kb) to 5 (covering 19.6 kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR, and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and the trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were in unsaturated FA metabolism and signaling pathways. Our findings provide novel insight into the genetic basis relevant to MUFA metabolism and biology.

Original publication

DOI

10.1194/jlr.P071860

Type

Journal

J Lipid Res

Publication Date

05/2017

Volume

58

Pages

974 - 981

Keywords

fatty acid/biosynthesis, fatty acid/desaturases, fatty acid/metabolism, genetics, monounsaturated fatty acid, Asian Continental Ancestry Group, Chromosome Mapping, European Continental Ancestry Group, Fatty Acids, Monounsaturated, Genetic Loci, Genome-Wide Association Study, Humans