Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The inherited 5-oxoprolinuria is primarily suggestive of genetic defects in two enzymes belonging to the gamma-glutamyl cycle in the glutathione (GSH) metabolism: the glutathione synthetase (GSS) and the 5-oxoprolinase (OPLAH). The GSS deficiency is the best characterized of the inborn errors of GSH metabolism, whereas the OPLAH deficiency is questioned whether it is a disorder or just a biochemical condition with no adverse clinical effects. Recently, the first human OPLAH mutation (p.H870Pfs) was reported in homozygosis in two siblings who suffered from 5-oxoprolinuria with a benign clinical course. We report two unrelated patients who manifested massive excretion of 5-oxoproline in urine. In both probands, the blood GSH levels were normal and no mutations were found in the GSS gene. The mutational screening of the OPLAH gene, which included the codified sequences, the intronic flanking sequences, the promoter sequence, and a genetic analysis in order to detect large deletions and/or duplications, showed that each patient only harbors one missense mutation in heterozygosis. The in silico analyses revealed that each one of these OPLAH mutations, p.S323R and p.V1089I, could alter the proper function of this homodimeric enzyme. In addition, clinical symptoms manifest in these two probands were not related to GSH cycle defects and, therefore, this study provides further evidence that oxoprolinuria may present as epiphenomenon in several pathological conditions and confound the final diagnosis.

Original publication

DOI

10.1007/8904_2012_166

Type

Journal article

Journal

JIMD Rep

Publication Date

2013

Volume

7

Pages

123 - 128