Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We undertook a genome-wide search for novel noncoding RNAs (ncRNA) in the malaria parasite Plasmodium falciparum. We used the RNAz program to predict structures in the noncoding regions of the P. falciparum 3D7 genome that were conserved with at least one of seven other Plasmodium spp. genome sequences. By using Northern blot analysis for 76 high-scoring predictions and microarray analysis for the majority of candidates, we have verified the expression of 33 novel ncRNA transcripts including four members of a ncRNA family in the asexual blood stage. These transcripts represent novel structured ncRNAs in P. falciparum and are not represented in any RNA databases. We provide supporting evidence for purifying selection acting on the experimentally verified ncRNAs by comparing the nucleotide substitutions in the predicted ncRNA candidate structures in P. falciparum with the closely related chimp malaria parasite P. reichenowi. The high confirmation rate within a single parasite life cycle stage suggests that many more of the predictions may be expressed in other stages of the organism's life cycle.

Original publication

DOI

10.1101/gr.6836108

Type

Journal article

Journal

Genome Res

Publication Date

02/2008

Volume

18

Pages

281 - 292

Keywords

Animals, Base Pairing, Base Sequence, Blotting, Northern, Chromosome Mapping, Computational Biology, Conserved Sequence, Evolution, Molecular, Genome, Protozoan, Microarray Analysis, Models, Genetic, Molecular Sequence Data, Phylogeny, Plasmodium falciparum, RNA, Untranslated, Sequence Alignment, Sequence Analysis, DNA, Species Specificity