Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Microvascular dysfunction in hypertrophic cardiomyopathy (HCM) may create an ischemic substrate conducive to sudden death, but it remains unknown whether the extent of hypertrophy is associated with proportionally poorer perfusion reserve. Comparisons between magnitude of hypertrophy, impairment of perfusion reserve, and extent of fibrosis may offer new insights for future clinical risk stratification in HCM but require multiparametric imaging with high spatial and temporal resolution. METHODS AND RESULTS: Degree of hypertrophy, myocardial blood flow at rest and during hyperemia (hMBF), and myocardial fibrosis were assessed with magnetic resonance imaging in 35 HCM patients (9 [26%] male/26 female) and 14 healthy controls (4 [29%] male/10 female), aged 18 to 78 years (mean+/-SD, 42+/-14 years) with the use of the American Heart Association left ventricular 16-segment model. Resting MBF was similar in HCM patients and controls. hMBF was lower in HCM patients (1.84+/-0.89 mL/min per gram) than in healthy controls (3.42+/-1.76 mL/min per gram, with a difference of -0.95+/-0.30 [SE] mL/min per gram; P<0.001) after adjustment for multiple variables, including end-diastolic segmental wall thickness (P<0.001). In HCM patients, hMBF decreased with increasing end-diastolic wall thickness (P<0.005) and preferentially in the endocardial layer. The frequency of endocardial hMBF falling below epicardial hMBF rose with wall thickness (P=0.045), as did the incidence of fibrosis (P<0.001). CONCLUSIONS: In HCM the vasodilator response is reduced, particularly in the endocardium, and in proportion to the magnitude of hypertrophy. Microvascular dysfunction and subsequent ischemia may be important components of the risk attributable to HCM.

Original publication

DOI

10.1161/CIRCULATIONAHA.106.657023

Type

Journal article

Journal

Circulation

Publication Date

08/05/2007

Volume

115

Pages

2418 - 2425

Keywords

Adolescent, Adult, Aged, Cardiomyopathy, Hypertrophic, Cardiovascular Agents, Contrast Media, Coronary Circulation, Endocardium, Female, Fibrosis, Gadolinium DTPA, Humans, Hyperemia, Image Processing, Computer-Assisted, Magnetic Resonance Angiography, Male, Microcirculation, Middle Aged, Myocardial Ischemia, Myocardium, Rest, Risk, Vasodilation