Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2019, Springer Nature Switzerland AG. Accurate ventricular volume measurements depend on complete heart coverage in cardiac magnetic resonance (CMR) from where most immediate indicators of normal/abnormal cardiac function are available non-invasively. However, incomplete coverage, especially missing basal or apical slices in CMR sequences is insufficiently addressed in population imaging and current clinical research studies yet has important impact on volume calculation accuracy. In this work, we propose a new deep architecture, coined Missing Slice Imputation Generative Adversarial Network (MSIGAN), to learn key features of cardiac short-axis (SAX) slices across different positions, and use them as conditional variables to effectively infer missing slices in the query volumes. In MSIGAN, the slices are first mapped to latent vectors with position features through a regression net. The latent vector corresponding to the desired position is then projected onto the slice manifold conditional on slice intensity through a generator net. The latent vector along with the slice features (i.e., intensity) and desired position control the generation vs. regression. Two adversarial networks are imposed on the regressor and generator, encouraging more realistic slices. Experimental results show that our method outperforms the previous state-of-the-art in missing slice imputation for cardiac MRI.

Original publication

DOI

10.1007/978-3-030-32245-8_72

Type

Publication Date

01/01/2019

Volume

11765 LNCS

Pages

651 - 659