Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Organisms like Dictyostelium discoideum, often referred to as DNA damage "extremophiles", can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other "extremophiles" can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA), translesion synthesis (TLS), and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage-resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents.

Original publication

DOI

10.1371/journal.pgen.1000645

Type

Journal

PLoS Genet

Publication Date

09/2009

Volume

5

Keywords

Animals, Cisplatin, Cross-Linking Reagents, DNA Repair, DNA-Binding Proteins, DNA-Directed DNA Polymerase, Dictyostelium, Drug Resistance, Fanconi Anemia Complementation Group D2 Protein, Fanconi Anemia Complementation Group Proteins, Gene Targeting, Genes, Protozoan, Models, Biological, Mutation, Ubiquitin, Ubiquitination