Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Existing evidence suggests links between brain and cardiovascular health. We investigated associations between cognitive performance and cardiovascular magnetic resonance (CMR) phenotypes in the UK Biobank, considering a range of potential confounders. METHODS AND RESULTS: We studied 29 763 participants with CMR and cognitive testing, specifically, fluid intelligence (FI, 13 verbal-numeric reasoning questions), and reaction time (RT, a timed pairs matching exercise); both were considered continuous variables for modelling. We included the following CMR metrics: left and right ventricular (LV and RV) volumes in end-diastole and end-systole, LV/RV ejection fractions, LV/RV stroke volumes, LV mass, and aortic distensibility. Multivariable linear regression models were used to estimate the association of each CMR measure with FI and RT, adjusting for age, sex, smoking, education, deprivation, diabetes, hypertension, high cholesterol, prior myocardial infarction, alcohol intake, and exercise level. We report standardized beta-coefficients, 95% confidence intervals, and P-values adjusted for multiple testing. In this predominantly healthy cohort (average age 63.0 ± 7.5 years), better cognitive performance (higher FI, lower RT) was associated with larger LV/RV volumes, higher LV/RV stroke volumes, greater LV mass, and greater aortic distensibility in fully adjusted models. There was some evidence of non-linearity in the relationship between FI and LV end-systolic volume, with reversal of the direction of association at very high volumes. Associations were consistent for men and women and in different ages. CONCLUSION: Better cognitive performance is associated with CMR measures likely representing a healthier cardiovascular phenotype. These relationships remained significant after adjustment for a range of cardiometabolic, lifestyle, and demographic factors, suggesting possible involvement of alternative disease mechanisms.

Original publication

DOI

10.1093/ehjci/jeab075

Type

Journal

Eur Heart J Cardiovasc Imaging

Publication Date

14/05/2021

Keywords

brain, cardiovascular disease, cardiovascular magnetic resonance, cognition, dementia, heart–brain axis, vascular risk factors