Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The organization of genes within the nucleus may influence transcription. We have analyzed the nuclear positioning of the coordinately regulated alpha- and beta-globin genes and show that the gene-dense chromatin surrounding the human alpha-globin genes is frequently decondensed, independent of transcription. Against this background, we show the frequent juxtaposition of active alpha- and beta-globin genes and of homologous alpha-globin loci that occurs at nuclear speckles and correlates with transcription. However, we did not see increased colocalization of signals, which would be expected with direct physical interaction. The same degree of proximity does not occur between human beta-globin genes or between murine globin genes, which are more constrained to their chromosome territories. Our findings suggest that the distribution of globin genes within erythroblast nuclei is the result of a self-organizing process, involving transcriptional status, diffusional ability of chromatin, and physical interactions with nuclear proteins, rather than a directed form of higher-order control.

Original publication

DOI

10.1083/jcb.200507073

Type

Journal

J Cell Biol

Publication Date

16/01/2006

Volume

172

Pages

177 - 187

Keywords

Animals, Cell Nucleus, Cell Separation, Cells, Cultured, Chromosomes, Erythroblasts, Gene Expression Regulation, Globins, Humans, In Situ Hybridization, Fluorescence, Mice, Transcription, Genetic