Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ObjectiveNeutrophils are typically the most abundant leucocyte in arthritic synovial fluid. We sought to understand changes that occur in neutrophils as they migrate from blood to joint.MethodsWe performed RNA sequencing of neutrophils from healthy human blood, arthritic blood and arthritic synovial fluid, comparing transcriptional signatures with those from murine K/BxN serum transfer arthritis. We employed mass cytometry to quantify protein expression and sought to reproduce the synovial fluid phenotype ex vivo in cultured healthy blood neutrophils.ResultsBlood neutrophils from healthy donors and patients with active arthritis showed largely similar transcriptional signatures. By contrast, synovial fluid neutrophils exhibited more than 1600 differentially expressed genes. Gene signatures identified a prominent response to interferon gamma (IFN-γ), as well as to tumour necrosis factor, interleukin-6 and hypoxia, in both humans and mice. Mass cytometry confirmed that healthy and arthritic donor blood neutrophils are largely indistinguishable but revealed a range of neutrophil phenotypes in synovial fluid defined by downregulation of CXCR1 and upregulation of FcγRI, HLA-DR, PD-L1, ICAM-1 and CXCR4. Reproduction of key elements of this signature in cultured blood neutrophils required both IFN-γ and prolonged culture.ConclusionsCirculating neutrophils from patients with arthritis resemble those from healthy controls, but joint fluid cells exhibit a network of changes, conserved across species, that implicate IFN-γ response and ageing as complementary drivers of the synovial fluid neutrophil phenotype.

Original publication

DOI

10.1136/annrheumdis-2021-221866

Type

Journal article

Journal

Annals of the rheumatic diseases

Publication Date

06/2022

Volume

81

Pages

805 - 814

Addresses

Division of Rheumatology, Department of Medicine V (Hematology, Oncology and Rheumatology), Heidelberg University Hospital, Heidelberg, Germany Ricardo.GrieshaberBouyer@med.uni-heidelberg.de peter.nigrovic@childrens.harvard.edu.

Keywords

Synovial Fluid, Neutrophils, Animals, Humans, Mice, Arthritis, Aging, Phenotype, Interferon-gamma