Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Ensuring adequate vitamin D status in older adults may reduce the risk of osteoporosis. The serum 25-hydroxyvitamin D [25(OH)D] concentration is the recommended biomarker of vitamin D status, but the optimal serum 25(OH)D concentration for bone health in postmenopausal women remains unclear. OBJECTIVE: The aim of this study was to apply the highly sensitive (41)Ca skeletal labeling technique and the measurement of urinary (41)Ca:(40)Ca ratios to determine the serum 25(OH)D concentration that has greatest benefit on bone calcium flux in postmenopausal women. METHODS: We administered a mean intravenous (41)Ca dose of 870 pmol to healthy postmenopausal women [n = 24, age (mean ± SD): 64 ± 6.0 y] without osteoporosis. After 6 mo, at the nadir of their wintertime serum 25(OH)D status, each of the women sequentially consumed daily oral cholecalciferol supplements of 10, 25, and 50 μg/d (in this order), each for 3 mo. We assessed serum 25(OH)D concentrations monthly and urinary (41)Ca:(40)Ca ratios biweekly. (41)Ca:(40)Ca ratios were measured with low-energy accelerator mass spectrometry. With the use of pharmacokinetic analysis, we determined the effect of varying serum 25(OH)D concentrations on (41)Ca transfer rates. RESULTS: At baseline, the mean (95% CI) serum 25(OH)D concentration was 16.2 (13.5, 18.8) μg/L. After the first, second, and third intervention periods, mean (95% CI) serum 25(OH)D increased to 29.8 (27.2, 32.4), 36.9 (34.2, 39.7), and 46.6 (41.2, 52.0) μg/L, respectively. Supplementation was associated with a downward shift in the urinary (41)Ca:(40)Ca ratio compared with the predicted (41)Ca:(40)Ca ratio without vitamin D supplementation. In the model, the most likely site of action of the increase in serum 25(OH)D was transfer from the central compartment to a fast exchanging compartment. At this transfer rate, predicted values were a concentration with half-maximal effect of 2.33 μg/L and an estimate of the maximal effect of 31.7%. After the first, second, and third intervention periods, the mean changes in this transfer rate were +18.0%, +25.7%, and +28.5%, respectively. CONCLUSION: In healthy postmenopausal women, increasing serum 25(OH)D primarily affects calcium transfer from the central compartment to a fast exchanging compartment; it is possible that this represents transfer from the extracellular space to the surface of bone. A serum 25(OH)D concentration of ~40 μg/L achieves ~90% of the expected maximal effect on this transfer rate. This trial was registered at clinicaltrials.gov as NCT01053481.

Original publication

DOI

10.3945/jn.115.215004

Type

Journal article

Journal

J Nutr

Publication Date

10/2015

Volume

145

Pages

2333 - 2340

Keywords

41Ca, bone health, calcium, postmenopausal women, serum 25(OH) vitamin D, skeletal labeling, vitamin D, 25-Hydroxyvitamin D 2, Aged, Biomarkers, Bone Density Conservation Agents, Bone Remodeling, Calcifediol, Calcium, Calcium Radioisotopes, Cholecalciferol, Cohort Studies, Dietary Supplements, Down-Regulation, Female, Humans, Kinetics, Middle Aged, Osteoporosis, Postmenopausal, Risk Factors, Seasons, Switzerland