Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have explored whether gamma-aminobutyric acid (GABA) is released by regulated exocytosis of GABA-containing synaptic-like microvesicles (SLMVs) in insulin-releasing rat pancreatic beta-cells. To this end, beta-cells were engineered to express GABA(A)-receptor Cl(-)-channels at high density using adenoviral infection. Electron microscopy indicated that the average diameter of the SLMVs is 90 nm, that every beta-cell contains approximately 3,500 such vesicles, and that insulin-containing large dense core vesicles exclude GABA. Quantal release of GABA, seen as rapidly activating and deactivating Cl(-)-currents, was observed during membrane depolarizations from -70 mV to voltages beyond -40 mV or when Ca(2+) was dialysed into the cell interior. Depolarization-evoked GABA release was suppressed when Ca(2+) entry was inhibited using Cd(2+). Analysis of the kinetics of GABA release revealed that GABA-containing vesicles can be divided into a readily releasable pool and a reserve pool. Simultaneous measurements of GABA release and cell capacitance indicated that exocytosis of SLMVs contributes approximately 1% of the capacitance signal. Mathematical analysis of the release events suggests that every SLMV contains 0.36 amol of GABA. We conclude that there are two parallel pathways of exocytosis in pancreatic beta-cells and that release of GABA may accordingly be temporally and spatially separated from insulin secretion. This provides a basis for paracrine GABAergic signaling within the islet.

Original publication

DOI

10.1085/jgp.200308966

Type

Journal article

Journal

J Gen Physiol

Publication Date

03/2004

Volume

123

Pages

191 - 204

Keywords

Animals, Calcium Signaling, Dose-Response Relationship, Drug, Exocytosis, GABA-A Receptor Agonists, Humans, Islets of Langerhans, Rats, Rats, Sprague-Dawley, Rats, Wistar, Receptors, GABA-A, Synaptic Vesicles, gamma-Aminobutyric Acid