Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Arterial spin labeling (ASL) provides a noninvasive method to measure brain perfusion and is becoming an increasingly viable alternative to more invasive MR methods due to improvements in acquisition, such as the use of a three-dimensional GRASE readout. A potential source of error in ASL measurements is signal arising from intravascular blood that is destined for more distal tissue. This is typically suppressed using diffusion gradients in many ASL sequences. However, several problems exist with this approach, such as the choice of cutoff velocity and gradient direction and incompatibility with certain readout modules. An alternative approach is to explicitly model the intravascular signal. This study exploits this approach by using multi-inversion time ASL data with a recently developed model-fitting method. The method employed permits the intravascular contribution to be discarded in voxels where there is no support in the data for its inclusion, thereby addressing the issue of overfitting. It is shown by comparing data with and without flow suppression, and by comparing the intravascular contribution in GRASE ASL data to MR angiographic images, that the model-fitting approach can provide a viable alternative to flow suppression in ASL where suppression is either not feasible or not desirable.

Original publication

DOI

10.1002/mrm.22320

Type

Journal article

Journal

Magn Reson Med

Publication Date

05/2010

Volume

63

Pages

1357 - 1365

Keywords

Adult, Algorithms, Carotid Stenosis, Female, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Magnetic Resonance Angiography, Male, Microvessels, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Spin Labels, Subtraction Technique, Young Adult