Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a heterogeneous condition that can lead to atrial fibrillation, heart failure, and sudden cardiac death in many individuals but mild clinical impact in others. The mechanisms underlying this phenotypic heterogeneity are not well defined. The aim of this study was to use plasma proteomic profiling to help illuminate biomarkers that reflect or inform the heterogeneity observed in HCM. METHODS: The Olink antibody-based proteomic platform was used to measure plasma proteins in patients with genotype positive (sarcomeric) HCM participating in the HCM Registry. We assessed associations between plasma protein levels with clinical features, cardiac magnetic resonance imaging metrics, and the development of atrial fibrillation. RESULTS: We measured 275 proteins in 701 patients with sarcomeric HCM. There were associations between late gadolinium enhancement with proteins reflecting neurohormonal activation (NT-proBNP [N-terminal pro-B-type natriuretic peptide] and ACE2 [angiotensin-converting enzyme 2]). Metrics of left ventricular remodeling had novel associations with proteins involved in vascular development and homeostasis (vascular endothelial growth factor-D and TM [thrombomodulin]). Assessing clinical features, the European Society of Cardiology sudden cardiac death risk score was inversely associated with SCF (stem cell factor). Incident atrial fibrillation was associated with mediators of inflammation and fibrosis (MMP2 [matrix metalloproteinase 2] and SPON1 [spondin 1]). CONCLUSIONS: Proteomic profiling of sarcomeric HCM identified biomarkers associated with adverse imaging and clinical phenotypes. These circulating proteins are part of both established pathways, including neurohormonal activation and fibrosis, and less familiar pathways, including endothelial function and inflammatory proteins less well characterized in HCM. These findings highlight the value of plasma profiling to identify biomarkers of risk and to gain further insights into the pathophysiology of HCM.

Original publication

DOI

10.1161/CIRCHEARTFAILURE.124.011707

Type

Journal article

Journal

Circ Heart Fail

Publication Date

05/11/2024

Keywords

biomarkers, cardiomyopathy, hypertrophic, coronary artery disease, heart failure, proteomics