Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The analysis tools and statistical methods used in large neuroimaging research studies differ from those applied in clinical contexts, making it unclear whether these techniques can be translated to a memory clinic setting. The Oxford Brain Health Clinic (OBHC) was established in 2020 to bridge this gap between research studies and memory clinics. We optimised the UK Biobank imaging framework for the memory clinic setting by integrating enhanced quality control (QC) processes (MRIQC, QUAD, and DSE decomposition) and supplementary dementia-informed analyses (lobar volumes, NBM volumes, WMH classification, PSMD, cortical diffusion MRI metrics, and tract volumes) into the analysis pipeline. We explored associations between resultant imaging-derived phenotypes (IDPs) and clinical phenotypes in the OBHC patient population (N = 213), applying hierarchical FDR correction to account for multiple testing. 14%-24% of scans were flagged by automated QC tools, but upon visual inspection, only 0%-2.4% of outputs were excluded. The pipeline successfully generated 5683 IDPs aligned with UK Biobank and 110 IDPs targeted towards dementia-related changes. We replicated established associations and found novel associations between brain metrics and age, cognition, and dementia-related diagnoses. The imaging protocol is feasible, acceptable, and yields high-quality data that is usable for both clinical and research purposes. We validated the use of this methodology in a real-world memory clinic population, which demonstrates the potential of this enhanced pipeline to bridge the gap between big data studies and clinical settings.

Original publication

DOI

10.1002/hbm.70151

Type

Journal

Hum Brain Mapp

Publication Date

15/02/2025

Volume

46

Keywords

Humans, United Kingdom, Aged, Female, Male, Biological Specimen Banks, Magnetic Resonance Imaging, Dementia, Big Data, Neuroimaging, Middle Aged, Brain, Aged, 80 and over, UK Biobank