Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Pancreatic β-cells use Ca(2+)-dependent exocytosis of large dense core vesicles to release insulin. Exocytosis in β-cells has been studied biochemically, biophysically and optically. We have previously developed a biophysical method to monitor release of endogenous intragranular constituents that are co-released with insulin. This technique involves the expression of ionotropic membrane receptors in the β-cell plasma membrane and enables measurements of exocytosis of individual vesicles with sub-millisecond resolution. Like carbon fibre amperometry, this method allows fine details of the release process, like the expansion of the fusion pore (the narrow connection between the granule lumen and the extracellular space), to be monitored. Here, we discuss experimental data obtained with this method within the framework of a simple mathematical model that describes the release of low-molecular constituents during exocytosis of the insulin granules. Our findings suggest that the fusion pore functions as a molecular sieve, allowing differential release of low- and high-molecular-weight granule constituents.

Original publication

DOI

10.1098/rsfs.2010.0006

Type

Journal article

Journal

Interface Focus

Publication Date

06/02/2011

Volume

1

Pages

143 - 152

Keywords

exocytosis, insulin, kiss-and-run, mathematical modelling, pancreas