Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

External stresses alter the magnetic properties of ferromagnetic materials such as iron and steel, a fact that has been the basis of substantial study in nondestructive testing. Existing theories and models have so far not proven reliable or accurate enough to develop a practical means of using the developed theory relating stress and magnetization to measure biaxial strains without prior knowledge of the strain or magnetic history of the sample. A deterministic model of ferromagnetic hysteresis and the effects of external stresses in materials such as iron and steel is introduced by this study. Changes in hysteresis loops due to stress are explained via changes in the magnetocrystalline anisotropy at the crystal-unit level, and are extended to the macroscopic effects that are seen in experiments. An original equation is presented which accurately describes experimentally acquired major hysteresis loops and directly relates two parameters to the two perpendicular principal strain axes thereby providing a technique able to determine the absolute stress/strain experienced by the sample. This model will potentially enable quantitative, nondestructive stress measuring devices to be developed. © 2009 IEEE.

Original publication

DOI

10.1109/TMAG.2008.2007510

Type

Journal article

Journal

IEEE Transactions on Magnetics

Publication Date

01/01/2009

Volume

45

Pages

83 - 87