Anti-IL-17A treatment reduces clinical score and VCAM-1 expression detected by in vivo magnetic resonance imaging in chronic relapsing EAE ABH mice.
Mardiguian S., Serres S., Ladds E., Campbell SJ., Wilainam P., McFadyen C., McAteer M., Choudhury RP., Smith P., Saunders F., Watt G., Sibson NR., Anthony DC.
IL-17 is argued to play an important role in the multiple sclerosis-like disease experimental autoimmune encephalitis (EAE). We investigated the therapeutic effects of anti-IL-17A in a chronic relapsing EAE ABH mouse model using conventional scoring, quantitative behavioral outcomes, and a novel vascular cell adhesion molecule 1 (VCAM-1)-targeted magnetic resonance imaging (MRI) contrast agent [anti-VCAM-microparticles of iron oxide (MPIO)] to identify conventionally undetectable neuropathology. Mice were administered prophylactic or treatment regimens of anti-IL-17A or IgG and two injections of anti-VCAM-MPIO before undergoing T2*-weighted three-dimensional and gadolinium-diethylenetriamine pentaacetic acid T1-weighted MRI. Rotarod, inverted screen, and open field motor function tests were performed, conventional clinical scores calculated, and central IL-17A mRNA expression quantified during acute disease, remission, and relapse. Prophylactic anti-IL-17A prevents acute disease and relapse and is associated with reduced clinical and functional severity. Treatment regimens delay relapse, improve functional scores, and are associated with reduced VCAM-MPIO lesions during remission. No significant alteration was detectable in levels of gadolinium-diethylenetriamine pentaacetic acid- or VCAM-MPIO-positive lesions during relapse. Prophylactic and treatment anti-IL-17A were therapeutically effective in chronic relapsing EAE, improving clinical and quantifiable functional outcomes. IL-17A expression seems significant during acute disease but less important chronically. Disease-related immunoneuropathology is more sensitively detected using VCAM-MPIO MRI, which may, therefore, be used to monitor therapy meaningfully.