Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Elevated IL-10 has been shown to be associated with severe dengue infection (DI). We proceeded to investigate the role of IL-10 in the pathogenesis of acute DI. MATERIALS AND METHODS: Ex vivo and cultured IFNγ ELISpot assays for dengue virus (DENV) NS3 protein and non dengue viral proteins were carried out in 26 patients with acute DI (16 with dengue haemorrhagic fever) and 12 healthy dengue seropositive individuals from Sri Lanka. DENV serotype specific (SS) responses were determined by using a panel of SS peptides. RESULTS: Serum IL-10 level were significantly higher (p = 0.02) in those who did not have in vitro responses to DENV-SS peptides (mean 144.2 pg/ml) when compared to those who responded (mean 75.7 pg/ml). DENV-NS3 specific ex vivo IFNγ ELISpot responses were also significantly lower (p = 0.0001) in those who did not respond to DENV-SS peptides (mean 42 SFU/million PBMCs) when compared to those who responded to DENV-SS peptides (mean 1024 SFU/million PBMCs). Serum IL-10 levels correlated significantly (p = 0.03) and inversely (Spearmans R = -0.45) with ex vivo DENV-NS3 specific responses but not with ex vivo non DENV specific responses (Spearmans R = -014, p = 0.52). Blockage of IL-10 in vitro significantly increased (p = 0.04) the ex vivo IFNγ ELISpot DENV-NS3 specific responses but had no effect on responses to non DENV proteins. CONCLUSION: IL-10 appears to contribute to the pathogenesis of acute dengue infections by inhibiting DENV-specific T cell responses, which can be restored by blocking IL-10.

Original publication

DOI

10.1371/journal.pntd.0002409

Type

Journal

PLoS Negl Trop Dis

Publication Date

2013

Volume

7

Keywords

Adult, Cells, Cultured, Dengue, Dengue Virus, Enzyme-Linked Immunospot Assay, Female, Humans, Immune Tolerance, Interferon-gamma, Interleukin-10, Male, Sri Lanka, T-Lymphocytes