Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The purpose of this study was to measure the spatially varying 31P MR signals in global and regional ischemic injury in the isolated, perfused rat heart. Chronic myocardial infarcts were induced by occluding the left anterior descending coronary artery eight weeks before the MR examination. The effects of acute global low-flow ischemia were observed by reducing the perfusate flow. Chemical shift imaging (CSI) with three spatial dimensions was used to obtain 31P spectra in 54-microl voxels. Multislice 1H imaging with magnetization transfer contrast enhancement provided anatomical information. In normal hearts (n = 8), a homogeneous distribution of high-energy phosphate metabolites (HEP) was found. In chronic myocardial infarction (n = 6), scar tissue contained negligible amounts of HEP, but their distribution in residual myocardium was uniform. The size of the infarcted area could be measured from the metabolic images; the correlation of infarct sizes determined by histology and 31P MR CSI was excellent (P < 0.006). In global low-flow ischemia (n = 8), changes of HEP showed substantial regional heterogeneity. Three-dimensional 31P MR CSI should yield new insights into the regionally distinct metabolic consequences of various forms of myocardial injury.

Type

Journal article

Journal

Magn Reson Med

Publication Date

05/1998

Volume

39

Pages

731 - 741

Keywords

Adenosine Triphosphate, Animals, Magnetic Resonance Spectroscopy, Male, Myocardial Infarction, Myocardial Ischemia, Myocardium, Phosphates, Phosphocreatine, Rats, Rats, Wistar