Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Signals that induce neural cell fate in amniote embryos emanate from a unique cell population found at the anterior end of the primitive streak. Cells in this region express a number of fibroblast growth factors (FGFs), a group of secreted proteins implicated in the induction and patterning of neural tissue in the amphibian embryo. Here we exploit the large size and accessibility of the early chick embryo to analyse the function of FGF signalling specifically during neural induction. Our results demonstrate that extraembryonic epiblast cells previously shown to be responsive to endogenous neural-inducing signals express early posterior neural genes in response to local, physiological levels of FGF signal. This neural tissue does not express anterior neural markers or undergo neuronal differentiation and forms in the absence of axial mesoderm. Prospective mesodermal tissue is, however, induced and we present evidence for both the direct and indirect action of FGFs on prospective posterior neural tissue. These findings suggest that FGF signalling underlies a specific aspect of neural induction, the initiation of the programme that leads to the generation of the posterior central nervous system.

Type

Journal article

Journal

Development

Publication Date

02/1998

Volume

125

Pages

473 - 484

Keywords

Animals, Body Patterning, Cell Movement, Central Nervous System, Chick Embryo, Ectoderm, Embryonic Induction, Fibroblast Growth Factors, Gastrula, Gene Expression Regulation, Developmental, Mesoderm, Nerve Tissue Proteins, Neurons, RNA, Messenger, Signal Transduction, Transcription Factors