Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To understand trends in individual responses to medication, one can take a purely data-driven machine learning approach, or alternatively apply pharmacokinetics combined with mixed-effects statistical modelling. To take advantage of the predictive power of machine learning and the explanatory power of pharmacokinetics, we propose a latent variable mixture model for learning clusters of pharmacokinetic models demonstrated on a clinical data set investigating 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD) activity in healthy adults. The proposed strategy automatically constructs different population models that are not based on prior knowledge or experimental design, but result naturally as mixture component models of the global latent variable mixture model. We study the parameter of the underlying multi-compartment ordinary differential equation model via identifiability analysis on the observable measurements, which reveals the model is structurally locally identifiable. Further approximation with a perturbation technique enables efficient training of the proposed probabilistic latent variable mixture clustering technique using Estimation Maximization. The training on the clinical data results in 4 clusters reflecting the prednisone conversion rate over a period of 4 h based on venous blood samples taken at 20-min intervals. The learned clusters differ in prednisone absorption as well as prednisone/prednisolone conversion. In the discussion section we include a detailed investigation of the relationship of the pharmacokinetic parameters of the trained cluster models for possible or plausible physiological explanation and correlations analysis using additional phenotypic participant measurements.

Original publication

DOI

10.1016/j.jtbi.2018.07.025

Type

Journal article

Journal

J Theor Biol

Publication Date

14/10/2018

Volume

455

Pages

222 - 231

Keywords

11β-HSD activity, Clustering, Dynamic systems, Expectation maximization, Gaussian mixture model, Identifiability analysis, In vivo glucocorticoid activation, Partially observed time series analysis, Perturbation analysis, Pharmacokinetics, Probabilistic models