Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis, but the causative germline and somatic mutations occur in separate cells at different times of an organism's life. Here we unify these processes to a single cellular event for mutations arising in male germ cells that show a paternal age effect. Screening of 30 spermatocytic seminomas for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G, encoding K650E, which causes thanatophoric dysplasia in the germline) and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA showed that levels of the FGFR3 mutation increase with paternal age and that the mutation spectrum at the Lys650 codon is similar to that observed in bladder cancer. Most spermatocytic seminomas show increased immunoreactivity for FGFR3 and/or HRAS. We propose that paternal age-effect mutations activate a common 'selfish' pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer predisposition.

Original publication

DOI

10.1038/ng.470

Type

Journal article

Journal

Nat Genet

Publication Date

11/2009

Volume

41

Pages

1247 - 1252

Keywords

Adult, Age Distribution, Aged, Aged, 80 and over, Base Sequence, Genes, ras, Genetic Predisposition to Disease, Humans, Male, Middle Aged, Mutation, Receptor, Fibroblast Growth Factor, Type 3, Spermatozoa, Testicular Diseases, Testicular Neoplasms