Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Hamartin, a component of the tuberous sclerosis complex (TSC) that actively inhibits the mammalian target of rapamycin (mTOR), may mediate the endogenous resistance of Cornu Ammonis 3 (CA3) hippocampal neurons following global cerebral ischemia. Pharmacological compounds that selectively inhibit mTOR may afford neuroprotection following ischemic stroke. We hypothesize that AZD2014, a novel mTORC1/2 inhibitor, may protect neurons following oxygen and glucose deprivation (OGD). METHODS: Primary neuronal cultures from E18 Wistar rat embryos were exposed to 2 h OGD or normoxia. AZD2014 was administered either during OGD, 24 h prior to OGD or for 24 h following OGD. Cell death was quantified by lactate dehydrogenase assay. We characterized the expression of mTOR pathway proteins following exposure to AZD2014 using western blotting. RESULTS: Following 2 h OGD +24 h recovery, AZD2014 increased neuronal death when present during OGD. Rapamycin, the archetypal mTOR inhibitor, had no effect on cell death. Treatment with AZD2014 24 h prior to OGD and 24 h after OGD also enhanced cell death. While Western blotting showed a trend towards decreased expression levels of phospho-Akt relative to total Akt with increasing AZD2014 concentration, hamartin expression was also significantly decreased leading to activation of mTOR. CONCLUSION: AZD2014 was detrimental to neurons that underwent ischemia. AZD2014 appeared to reduce hamartin, a known neuroprotective mediator, thereby preventing any beneficial effects of mTOR inhibition. Further characterization of the role of individual mTOR complexes (mTORC1 and mTORC2) and their upstream and downstream regulators are necessary to reveal whether these pathways are neuroprotective targets for stroke.

Original publication

DOI

10.1016/j.neulet.2019.05.023

Type

Journal article

Journal

Neurosci Lett

Publication Date

14/05/2019

Volume

706

Pages

223 - 230

Keywords

AZD2014, Hamartin, Rapamycin, mTORC1, mTORC2