Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A model of cardiac microstructure and diffusion MRI is presented, and compared with experimental data from ex vivo rat hearts. The model includes a simplified representation of individual cells, with physiologically correct cell size and orientation, as well as intra- to extracellular volume ratio. Diffusion MRI is simulated using a Monte Carlo model and realistic MRI sequences. The results show good correspondence between the simulated and experimental MRI signals. Similar patterns are observed in the eigenvalues of the diffusion tensor, the mean diffusivity (MD), and the fractional anisotropy (FA). A sensitivity analysis shows that the diffusivity is the dominant influence on all three eigenvalues of the diffusion tensor, the MD, and the FA. The area and aspect ratio of the cell cross-section affect the secondary and tertiary eigenvalues, and hence the FA. Within biological norms, the cell length, volume fraction of cells, and rate of change of helix angle play a relatively small role in influencing tissue diffusion. Results suggest that the model could be used to improve understanding of the relationship between cardiac microstructure and diffusion MRI measurements, as well as in testing and refinement of cardiac diffusion MRI protocols.

Original publication

DOI

10.1109/TMI.2017.2679809

Type

Journal

IEEE Trans Med Imaging

Publication Date

06/2017

Volume

36

Pages

1316 - 1325

Keywords

Anisotropy, Diffusion Magnetic Resonance Imaging, Diffusion Tensor Imaging, Monte Carlo Method, Myocardium