Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

  • Leanne Hodson

About the Research

Understanding the underlying causes and mechanistic basis for the development of fatty liver disease and how this influences the development of metabolic diseases (like insulin resistance).

The liver has a major role in regulating metabolic homeostasis; it is a central cross-road for fatty acid and glucose metabolism. It aids as an intermediary organ between dietary (exogenous) and endogenous energy sources and other extrahepatic organs/tissues that consume energy. Perturbations in liver metabolism have the potential to impact widely on metabolic disease risk.  In health, the liver rapidly adapts to alterations in nutritional state and the nutrient fluxes that occur from a fasted to fed state. However, the deposition of fat in non-adipose tissues (known as ectopic fat) such as the liver is an important factor in the development of obesity-related metabolic abnormalities such as type 2 diabetes and cardiovascular disease. Why the liver starts to accumulate fat is not well understood. My research program aims at understanding the underlying causes and mechanistic basis for intrahepatic fat storage to identify ways of preventing and treating fatty liver disease, along with the role this plays in the development of other metabolic diseases.

There is now evidence demonstrating that what we eat (the nutrient composition of our diet) can influence if fat starts to accumulate within the liver.  For example, we have evidence that eating a weight-maintaining diet enriched with saturated fat when compared to consuming polyunsaturated fat, may lead to liver fat accumulation. The reasons for these differential effects are not well understood.

To answer questions on how diet composition and other factors, such as therapeutic agents (e.g. diabetes medication) affect the regulation of liver fat content we take a multilevel approach where we combine dietary intervention studies, with whole body human physiological studies that use stable isotope tracer methodology, along with imaging, cellular studies, and genetics.  

We are particularly interested in exploring the following areas:

  • How specific dietary components (saturated fats, fish oils, sugars) influence liver fat metabolism
  • How lipid droplet size and location within hepatocytes influence cellular function
  • The effect of different dietary fatty acids and triglyceride-rich lipoprotein remnants have on the regulation of cellular processes
  • Influence of genotype/genetics on liver metabolism 

Training Opportunities

  • Hepatocyte biology, cell culture systems
  • Whole body human and cellular metabolic physiology using tracers
  • Designing and executing small-scale experimental studies in humans. Access to the Oxford Biobank (www.oxfordbiobank.org.uk) ensures high-quality selection of informative individuals.

 

Students are encouraged to attend the MRC Weatherall Institute of Molecular Medicine DPhil Course, which takes place in the autumn of their first year. Running over several days, this course helps students to develop basic research and presentation skills, as well as introducing them to a wide range of scientific techniques and principles, ensuring that students have the opportunity to build a broad-based understanding of differing research methodologies.

Generic skills training is offered through the Medical Sciences Division's Skills Training Programme. This programme offers a comprehensive range of courses covering many important areas of researcher development: knowledge and intellectual abilities, personal effectiveness, research governance and organisation, and engagement, influence, and impact. Students are actively encouraged to take advantage of the training opportunities available to them.

As well as the specific training detailed above, students will have access to a wide range of seminars and training opportunities through the many research institutes and centres based in Oxford.

The Department has a successful mentoring scheme, open to graduate students, which provides an additional possible channel for personal and professional development outside the regular supervisory framework. We hold an Athena SWAN Silver Award in recognition of our efforts to build a happy and rewarding environment where all staff and students are supported to achieve their full potential.

Publications

1

Parry, S.A., Rosqvist, F., Mozes, F.E., Cornfield, T., Hutchinson, M., Piche, M.E., Hulsmeier, A.J., Hornemann, T., Dyson, P., Hodson, L. Intrahepatic Fat and Postprandial Glycemia Increase After Consumption of a Diet Enriched in Saturated Fat Compared With Free Sugars. Diabetes Care 2020 43(5): p. 1134-1141. 10.2337/dc19-2331

2

Gunn PJ, Pramfalk C, Millar V, Cornfield T, Hutchinson M, Troncoso-Rey P, Mithen RF, Traka MH, Green CJ, Hodson L. Modifying nutritional substrates induces macrovesicular lipid droplet accumulation and metabolic alterations in a cellular model of hepatic steatosis. Physiol Rep. 2020 Jul;8(13):e14482. doi: 10.14814/phy2.14482

3

Nagarajan SR, Cross E, Johnson E, Sanna F, Daniels LJ, Ray DW, Hodson L. Determining the temporal, dose, and composition effects of nutritional substrates in an in vitro model of intrahepatocellular triglyceride accumulation. Physiol Rep. 2022;10(20):e15463.10.14814/phy2.15463

4

Luukkonen PK, Sadevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, Lallukka S, Pelloux V, Gaggini M, Jian C, Hakkarainen A, Lundbom N, Gylling H, Salonen A, Oresic M, Hyotylainen T, Orho-Melander M, Rissanen A, Gastaldelli A, Clement K, Hodson L, Yki-Jarvinen H. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care. 2018;41(8):1732-9.10.2337/dc18-0071