Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ladislav Valkovič

PhD


Associate Professor of Metabolic Imaging

  • Sir Henry Dale Fellow of the Wellcome Trust

Investigation of energy metabolism in human tissues using ultra high field magnetic resonance spectroscopy.

My research focuses on magnetic resonance (MR) metabolic imaging. This involves quantification of energy metabolites and metabolic reaction rates using MR spectroscopy (MRS), to non-invasively detect metabolic impairments and to monitor therapy outcome. My work focuses on method development for the assessment of energy metabolism of human heart, liver and skeletal muscle in disease. This is crucial to understand the impact of systemic and cardiovascular diseases on these systems. A lot of my work examines interventions of increased physical activity to improve oxidative metabolism and exercise tolerance of elderly people and also to manage individual weight in obesity and diabetes. 

I mainly use our ultra-high field (7T) MR system, as it provides exceptional signal-to-noise ratio (SNR), in particular for my phosphorus (31P)-MRS experiments. This improvement in SNR allows me to develop methods to acquire high quality spatially resolved data with high temporal resolution. In particular, I have developed the first clinically feasible technique worldwide that allows assessment of stimulated oxidative energy production rate, in only one exercise repetition. As nothing comes for free, 7T brings several challenges, eg field inhomogeneities. Therefore I also develop techniques to overcome these challenges, eg interleaved excitation with narrow-banded, field insensitive excitation pulse for cardiac energetics quantification. I collaborate with several research groups in Oxford interested in non-invasive oxidative metabolism measurements. I am also a former member of the MRS group at the Medical University of Vienna, and thus, have strong ties to research groups in Central Europe, ie Austria, Slovakia and Czech Republic, interested in MRS method development and exercise interventions.