Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Beta-adrenergic receptor-blocking agents are commonly used for treatment of hypertension, angina pectoris and arrhythmias and as secondary prevention after myocardial infarction. The modest protection against myocardial infarction conferred by these compounds in primary-preventive studies has suggested that beneficial effects of beta-blockade are counteracted by known adverse influences on lipid and glucose metabolism. As most beta-blockers increase plasma triglycerides and decrease the high density lipoprotein (HDL) cholesterol concentration, a randomized, double-blind, cross-over study was conducted to evaluate whether a 12-week treatment with metoprolol (100 mg o.d.) or placebo affected the metabolism of postprandial triglyceride-rich lipoproteins in 15 middle-aged men with a modestly increased cardiovascular risk. Metoprolol treatment significantly increased the postprandial responses of very low density lipoprotein (VLDL) and VLDL remnants to a mixed meal-type of oral fat tolerance test. The effect was particularly prominent for larger (Svedberg flotation rate (Sf) > 400 and Sf 60-400) particle species (P < 0.001 in repeated measures ANOVA), whereas the smaller (Sf 20-60) particles were less affected (P < 0.05). The changes in the postprandial responses of the different VLDL species were mainly related to an effect on the fasting plasma concentrations, with limited or no influences on VLDL catabolism during the postprandial state. In contrast, metoprolol treatment did not significantly influence the postprandial responses of chylomicrons and chylomicron remnants. Notably, the enhanced fasting and postprandial triglyceridaemia during metoprolol treatment was neither accompanied by a rise in fasting or postprandial free fatty acid concentrations, nor by alterations of the glucose and insulin responses to a standard oral glucose challenge. The ensuing shift in the LDL particle size distribution towards smaller particles was limited (fraction small LDL: metoprolol 22.8 +/- 15.7% versus placebo 19.3 +/- 15.0%, P < 0.05). In conclusion, metoprolol treatment primarily enhances fasting and postprandial triglyceridaemia in middle-aged men by increasing the basal hepatic production of VLDL.

Type

Journal

Atherosclerosis

Publication Date

04/1998

Volume

137

Pages

391 - 400

Keywords

Adrenergic beta-Antagonists, Adult, Apolipoprotein B-100, Apolipoprotein B-48, Apolipoproteins B, Blood Glucose, Cardiovascular Diseases, Chylomicrons, Cross-Over Studies, Double-Blind Method, Fatty Acids, Nonesterified, Follow-Up Studies, Homeostasis, Humans, Insulin, Lipoproteins, LDL, Lipoproteins, VLDL, Male, Metoprolol, Middle Aged, Postprandial Period, Risk Factors, Triglycerides