Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2019, The Author(s). Expectation maximization (EM) is a technique for estimating maximum-likelihood parameters of a latent variable model given observed data by alternating between taking expectations of sufficient statistics, and maximizing the expected log likelihood. For situations where sufficient statistics are intractable, stochastic approximation EM (SAEM) is often used, which uses Monte Carlo techniques to approximate the expected log likelihood. Two common implementations of SAEM, Batch EM (BEM) and online EM (OEM), are parameterized by a “learning rate”, and their efficiency depend strongly on this parameter. We propose an extension to the OEM algorithm, termed Introspective Online Expectation Maximization (IOEM), which removes the need for specifying this parameter by adapting the learning rate to trends in the parameter updates. We show that our algorithm matches the efficiency of the optimal BEM and OEM algorithms in multiple models, and that the efficiency of IOEM can exceed that of BEM/OEM methods with optimal learning rates when the model has many parameters. Finally we use IOEM to fit two models to a financial time series. A Python implementation is available at https://github.com/luntergroup/IOEM.git.

Original publication

DOI

10.1007/s00180-019-00937-4

Type

Journal article

Journal

Computational Statistics

Publication Date

01/01/2019