Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have performed a Phase I clinical trial with the naturally occurring flavonoid quercetin (3,3',4',5,7-pentahydroxyflavone). Quercetin has antiproliferative activity in vitro and is known to inhibit signal transduction targets including tyrosine kinases, protein kinase C, and phosphatidyl inositol-3 kinase. Quercetin was administered by short i.v. infusion at escalating doses initially at 3-week intervals. The first dose level was 60 mg/m2; at the 10th dose level of 1700 mg/m2, dose-limiting nephrotoxicity was encountered, but no myelosuppression. At the preceding dose level of 1400 mg/m2, five patients were treated at 3-week intervals, and another eight patients were treated on a once-weekly schedule; overall, 2 of 10 evaluable patients had renal toxicity, 1 at grade 2 and 1 at grade 4. We therefore treated other patients at 945 mg/m2 (eight at 3-week intervals and six at weekly intervals); 3 of 14 patients had clinically significant renal toxicity, 2 patients with grade 2 and 1 patient with grade 3. Patients treated on the weekly schedule did not have cumulative renal impairment but did have a fall in the glomerular filtration rate of 19 +/- 8% in the 24 h after drug administration. We recommend 1400 mg/m2 as the bolus dose, which may be given either in 3-week or weekly intervals, for Phase II trials. Quercetin pharmacokinetics were described by a first-order two-compartment model with a median t(1/2)alpha of 6 min and median t(1/2)beta of 43 min. The median estimated clearance was 0.28 liter/min/m2, and median volume of distribution at steady state was 3.7 liter/m2. In 9 of 11 patients, lymphocyte protein tyrosine phosphorylation was inhibited following administration of quercetin at 1 h, which persisted to 16 h. In one patient with ovarian cancer refractory to cisplatin, following two courses of quercetin (420 mg/m2), the CA 125 had fallen from 295 to 55 units/ml, and in another patient with hepatoma, the serum alpha-fetoprotein fell. In conclusion, quercetin can be safely administered by i.v. bolus at a dose injection. The plasma levels achieved inhibited lymphocyte tyrosine kinase activity, and evidence of antitumor activity was seen.

Type

Journal article

Journal

Clin Cancer Res

Publication Date

04/1996

Volume

2

Pages

659 - 668

Keywords

Adult, Aged, Enzyme Inhibitors, Female, Humans, Kidney, Male, Middle Aged, Neoplasms, Potassium, Protein-Tyrosine Kinases, Quercetin