Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Aneurysmal subarachnoid haemorrhage (SAH) is a devastating subset of stroke. One of the major determinates of morbidity is the development of delayed cerebral ischemia (DCI). Disruption of the nitric oxide (NO) pathway and consequently the control of cerebral blood flow (CBF), known as cerebral autoregulation, is believed to play a role in its pathophysiology. Through the pharmacological manipulation of in vivo NO levels using an exogenous NO donor we sought to explore this relationship. Phase synchronisation index (PSI), an expression of the interdependence between CBF and arterial blood pressure (ABP) and thus cerebral autoregulation, was calculated before and during sodium nitrite administration in 10 high-grade SAH patients acutely post-rupture. In patients that did not develop DCI, there was a significant increase in PSI around 0.1 Hz during the administration of sodium nitrite (33%; p-value 0.006). In patients that developed DCI, PSI did not change significantly. Synchronisation between ABP and CBF at 0.1 Hz has been proposed as a mechanism by which organ perfusion is maintained, during periods of physiological stress. These findings suggest that functional NO depletion plays a role in impaired cerebral autoregulation following SAH, but the development of DCI may have a distinct pathophysiological aetiology.

Original publication

DOI

10.1016/j.niox.2020.10.004

Type

Journal article

Journal

Nitric Oxide

Publication Date

01/01/2021

Volume

106

Pages

55 - 65

Keywords

Cerebral autoregulation, Cerebral blood flow, Nitric oxide, Nitrite, Stroke, Subarachnoid haemorrhage, Adolescent, Adult, Aged, Aged, 80 and over, Arterial Pressure, Cerebrovascular Circulation, Female, Humans, Male, Middle Aged, Nitric Oxide, Sodium Nitrite, Subarachnoid Hemorrhage, Young Adult