Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RATIONALE: Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium). OBJECTIVES: To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample. METHODS: We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/-10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations. RESULTS: The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV(1) or FEV(1)/FVC traits using a carefully defined significance threshold of 1.3×10(-5). The most significant loci associated with FEV(1) include SNPs tagging MACROD2 (P = 6.81×10(-5)), CNTN5 (P = 4.37×10(-4)), and TRPV4 (P = 1.58×10(-3)). Among ever-smokers, SERPINA1 showed the most significant association with FEV(1) (P = 8.41×10(-5)), followed by PDE4D (P = 1.22×10(-4)). The strongest association with FEV(1)/FVC ratio was observed with ABCC1 (P = 4.38×10(-4)), and ESR1 (P = 5.42×10(-4)) among ever-smokers. CONCLUSIONS: Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV(1) among smokers in the general population.

Original publication

DOI

10.1371/journal.pone.0019382

Type

Journal article

Journal

PLoS One

Publication Date

2011

Volume

6

Keywords

Biomarkers, Forced Expiratory Volume, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Lung, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Pulmonary Disease, Chronic Obstructive, Respiratory Function Tests, United Kingdom, Vital Capacity